Review of ODEs
An ordinary differential equation is an equation for $y=y(x)$ which involves the derivatives of y.

Geneal form for first-order (ie only involves $\frac{d y}{d x}$ and not $\frac{d^{2} y}{d x^{2}}$, $\frac{d^{3} y}{d x^{3}}$ etc) $D E$:

$$
A(x, y) d x+B(x, y) d y=0
$$

Note: you can also witt this as:

$$
\frac{d y}{d x}=-\frac{A(x, y)}{B(x, y)}
$$

The way to visualize a DE is that at each point (x, y) in the plane the formula $*$ gives th slope of a solution $y(x)$ that passes twang that point. This is called the slope field of the DE.

Example Sketch the slope field of

$$
x d x+y d y=0
$$

and use it to sketch solutions of the DE.

Note: Don't be fooled by the fact that we acre symbolically solving lots of DE's in this course (i.e. finding explicit formulas for their solutions in terns of standard functions like palynomids, trig functions, exporentials, etc.). Most DE's cant be saved in terms of standard function!! But, you can always numerically salve then (ie. approximate their solution on a computer)... you just wont have a nice formula for the solution.

In fact, in practice, if a certain DE is important to us, and we dort yet have a formula for its solution in terms of our standard toolbox of functions, then we can just add its solution to ours toolbox of functions! (This is precisely how we defined some functions in our toolbox already...)

Put yourself in the position where you know abas polynomials and trig functions, and then you encounter the following $D E$:

Example Plot the slope field and sheikh an epprasimale solution to:

$$
y=\int_{0}^{x} \frac{1}{t} d t \quad[=\ln x]
$$

Example Try to solve the DE:

$$
\frac{d y}{d x}=e^{-x^{2}}, y(0)=0
$$

$$
y=\int_{0}^{x} e^{-t^{2}} d t \quad[=\operatorname{esf}(x)]
$$

Good news (1) I have made a brilliant differential equations app, which you shad always use on each prodden to confirm what's going on!
(Mono)

Good news (2) You can ask WaframAlpha (or Mathenatica) to trio symbdically sore a DE for you. It is not able to wite the sodctiong as an inplicir function of $x, e g$.

$$
x+d x+y d y=1 \quad, \quad y(0)=1
$$

\rightarrow sdution: $\quad x^{2}+y^{2}=1 \quad \leftarrow$ simple
Wolfram Alpha/Mattinatica writes y explicitly as a function of x :

$$
y(x)=\sqrt{1-x^{2}} \leftarrow \text { complicated }
$$

For this reason, I recommend using Sage Mart (I put a link on Sunkearn!) to solve DE's symbolically to check your solutions.

Review of ODEs

Liner DE's

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Method of solution: multiply both sides by integrating fucker

$$
I(x)=e^{\int p(x) d x}
$$

and then recognize the LUS as the derivative of something.

Example Solve

$$
x \frac{d y}{d x}-4 y=x^{6} e^{x}
$$

(son: $\quad y=x^{5} e^{x}-x^{4} e^{x}+\left(x^{4}.\right)$

$$
\begin{aligned}
y^{\prime}-\frac{4}{-\frac{4}{x} y} & =x^{5} e^{x} \\
I=e^{\int \rho d x}=e^{\int-\frac{4}{x} d x} & =e^{-4 \ln x} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

molt.
both sides of (6) by I

$$
\begin{aligned}
& \therefore \frac{1}{x^{4}} y^{\prime}-4 x^{-5} y=x e^{x} \\
& \therefore \quad \frac{d}{d x}\left(x^{-4} y\right)=x e^{x} \\
& \therefore x^{-4} y=\iint_{u}^{x} \underbrace{e^{x} d x}_{d u} \\
& \\
& =x e^{x}-\int e^{x} d x \\
& \\
& =x e^{x}-e^{x}+C \\
& \therefore \quad x^{-4} y=x e^{x}-e^{x}+C .
\end{aligned}
$$

Example (2.3 20) Sodue

$$
\begin{gathered}
(x+2)^{2} \frac{d y}{d x}=5-8 y-4 x y, y(0)=3 / 4 \\
\text { (son: } y=\frac{5}{(x+2)^{6}}-\frac{4}{(x+2)^{4}} \\
y^{\prime}+\frac{(4 x+8) y}{(x+2)^{2}}=\frac{5}{(x+2)^{2}} \\
\therefore y^{\prime}+\underbrace{\frac{4}{x+2}} y=\frac{5}{(x+2)^{2}} \\
\therefore=e^{\int \rho d x}=e^{\int 4 / x+2 d x}=e^{4 h(x+2)} \\
\therefore(x+2)^{4} \\
\therefore\left(x+4(x+2)^{3} y=5(x+2)^{2}\right. \\
\therefore \frac{d}{d x}\left(y^{\prime}(x+2)^{4} y\right)=5(x+2)^{2} \\
\therefore \\
\therefore(x+2)^{4} y=\int 5(x+2)^{2} d x \\
\therefore \frac{5}{3}(x+2)^{3}+C
\end{gathered}
$$

$$
\begin{gathered}
\therefore y=\frac{5}{3}(x+2)^{-1}+\frac{C}{(x+2)^{4}} \\
y(-1)=0 \\
\Rightarrow 0=5 / 3+C \\
\therefore C=-5 / 3 \\
y=5 / 3\left[(x+2)^{-1}-\frac{1}{\left.(x+2)^{4}\right]}\right.
\end{gathered}
$$

